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This paper addresses hybrid methods which employ analytic or 
asymptotic approaches as global operators and which employ numeri- 
cal algorithms as local operators for studying physical phenomena in 
complex environments governed by Helmholtz and Poisson equations. 
Specifically, a ray-mode-boundary elements-finite elements method 
for analyzing wave scattering from a scatterer embedded in a waveguid 
is shown. This hybrid method can also be employed to analyze static 
problems as the source frequency becomes zero. Numerical results 
show smooth transition between static and dynamic responses. 
0 1992 Academic Press. Inc. 

I. INTRODUCTION 

No one single solution method can work satisfactorily to 
analyze physical phenomena in complex environments 
governed by the Helmholtz or Poisson equation for a broad 
range of parameters. Therefore, it may be advantageous to 
combine various approaches into a single framework, which 
will provide numerical efficiency and physical insight. 
Moreover, comparing the results from different hybrid 
combinations may provide validity checks for a complex 
problem. Though the physical phenomena of a dynamic 
system (governed by the Helmholtz equation) and those of 
a static system (governed by the Poisson equation) are quite 
different, frameworks of mathematical approaches for both 
systems are very similar to each other. In fact, many algo- 
rithms solving for the Helmholtz equation allow the source 
frequency to approach zero. Thereby, they can also solve for 
the Poisson equation without major modifications. In this 
paper we will discuss hybrid methods combining global and 

local operators to analyze both dynamic and static results 
for problems involving small obstacles embedded in a 
global environment. 

In the Helmholtz or Poisson equation, we have three 
configurational coordinates. The most general hybrid 
method can be constructed by partitioning entire regions 
into subregions. In every subregion each configurational 
coordinate defines a local spectral domain. (Only evanes- 
cent spectra exist in a static system.) The solution in the 
subregion can then be solved in the original coordinate 
system, transformed domain, or mixed (phase) domain. 
Furthermore, there are various ways of partitioning spectra 
and of performing inverse transforms. Therefore, there 
usually exist many solution methods available for each 
subregion, and the proper options must be chosen to 
provide physical insight and to ensure numerical efficiency 
and accuracy. (Hybrid methods may be desirable even in 
some subregions.) To integrate various methods in these 
subregions, we impose boundary conditions at the inter- 
faces between subregions. The field variables along these 
interfaces are then formulated in terms of system equations 
which are to be solved numerically. Efficient iterative 
schemes for solving the system equations are available when 
the coupling among subsystems is weak. 

Regarding the dynamic analyses, typical global propa- 
gators of the environment, local scattering operators of the 
scatterer, and a systematic way of combining them are dis- 
cussed in Section II. Section III describes a specific example 
which employs a ray-mode-boundary elements-finite 
elements method to analyze wave scattering by obstacles in 
a waveguide. The boundary element method is employed to 
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model the coupling between the interior and the exterior of 
the scatterer, the finite element method to formulate the 
interior responses of the scatterer, and the ray-mode 
method to provide Green’s function of the waveguide. The 
efficiency of the ray-mode Green’s function makes use of the 
boundary-finite element method practical in waveguides, 
and the flexibility of the boundary-finite elements method 
permits the application of the Green’s function considered 
to arbitrarily shaped and placed scatterers. 

As the frequency approaches zero, the dynamic behaviors 
become static, and the Helmholtz equation is reduced to the 
Poisson equation. In the static limit the Iields can no longer 
propagate, and the effective coupling or interaction ranges 
are greatly reduced. However, one may still need hybrid 
combinations of various methods to analyze a complex 
system if the coupling or interaction effects are not 
negligible. In Section IV, various methods discussed in 
Sections II and III are examined when the source frequency 
(f) approaches zero. Numerical simulations of both static 
and dynamic responses for various structures are presented 
in Section V. The transition of physical phenomena from 
the dynamic case (f # 0) to the static situation (f= 0) is 
closely examined. Conclusions are made in Section VI. 

II. BRIEF OVERVIEW OF HYBRID 
METHODS FOR DYNAMIC RESPONSES 

To solve the Helmholtz equation in a complex medium, 
analytic methods (such as spectral integration, mode expan- 
sion, generalized ray expansion, and ray-mode combina- 
tion) are efficient global propagators for large structures 
but work only for separable geometries. Approximate 
approaches are more flexible than analytic techniques but 
are restricted to some asymptotic regimes, and it is difficult 
to assess the accuracy of the computed results. For example, 
high frequency methods, such as asymptotic ray theory and 
Gaussian beam method, are flexible enough to be adapted 
to non-planar and inhomogeneous layered media, but fail 
when media properties vary rapidly. Numerical algorithms 
are flexible operators for modeling any geometries but are 
inefficient global propagators. For example, low frequency 
methods, such as method of moments, T-matrix, finite 
elements, boundary elements, and finite difference, are 
convenient for small size structures, but are too computer 
intensive for large media. Therefore, we would like to 
combine various methods to utilize their advantages and 
avoid their disadvantages. In this section, we give a brief 
overview of global propagators, local scattering operators, 
and hybrid combinations of them. 

A. Global Propagators 

For propagation in a stratified medium, discrete or con- 
tinuous transforms can be applied to the lateral coordinates. 

The remaining transverse coordinate can then be solved by 
numerical methods (such as finite elements and finite dif- 
ference), analytic methods (such as characteristic Green’s 
functions, invariant embedding, reflectivity, propagator), or 
asymptotic methods (such as WKBJ). Therefore, many 
alternative numerical schemes are available. According to 
the techniques employed for the three configurational coor- 
dinates, we have spectra-finite elements [ 11, spectra-finite 
difference [2], depth mode-lateral ray [3], etc. According 
to the ways of partitioning spectra and of performing 
inverse transform(s), we have spectral integral, mode, 
generalized ray, ray-mode [4, 51, etc. 

In the generalized ray representation the field is resolved 
into progression (traveling) waves along (ray) trajectories 
that chart the local progress of the motion via multiple 
reflections and refractions between source and observer. 
When observation is made at the source point, separation of 
the singular contribution, i.e., the direct ray term, is very 
convenient for this ray representation. This scheme becomes 
intractable for large source-observer separation, where 
many rays must be included. When many layers are present, 
ray proliferation could be serious even for small source- 
observer separation. 

The spectral integration approach highlights the features 
associated with the various plane waves (propagating and 
evanescent) that synthesize the source distribution. It 
represents all of the rays collectively and, therefore, can 
alleviate the difficulties of the ray proliferation. This method 
becomes inefficient at high frequencies and/or for large 
source-observer separation due to the strong oscillatory 
behavior of the integrand. 

The modal expansion represents the field globally in 
terms of normal modes which propagate with different 
velocities in the direction parallel to the layers. It becomes 
inefficient at high frequencies and/or small source-observer 
separation, where many modes are required. 

These three conventional approaches for the Green’s 
function of a layered structure have complementary proper- 
ties. None of them are satisfactory over a broad range of 
parameter regimes. Realizing that spectral intervals 
containing clusters of rays or modes are sparsely filled by 
modes or rays, respectively, the hybrid ray-mode method 
combines rays, modes, and remainders self-consistently 
within a single framework, so as to optimize the advantages 
of each. Here the remainders are actually modified spectral 
representations accounting for truncation effects of ray or 
mode series and are represented by partial sums of plane 
waves with complex spectra. This hybrid solution has 
advantages of the three conventional representations, i.e., 
separation of the singular term, remedy of the difficulties 
due to the ray proliferation or mode clustering, and 
efficiency for all possible arrangements of source and 
receiver locations. In some parameter regimes, the general 
hybrid ray-mode representation may reduce to one, or a 
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combination of two, of the three conventional representa- titularly useful when other global propagators are not 
tions, when the reduced form is more convenient. practical alternatives. 

If the medium properties are not laterally invariant, the 
exact transform theory fails. Nevertheless, local modes [6], 
intrinsic modes [7], asymptotic rays [8], paraxial beams 
[S, 91, and the adiabatic transform [ 10) are still useful in a 
weakly range-dependent medium. Some semi-numerical 
methods, such as parabolic equation [ 111, are also 
available. The parabolic equation method is an efficient 
approach for wave propagation problems in range- 
dependent environments because it replaces the reduced 
wave equation, which is a boundary value problem, with an 
initial value problem. A significant amount of work has 
been devoted to improve the accuracy of this algorithm. 

B. Scattering Operators 

When the medium does not have a preferential direction, 
the guided mode concept is no longer useful. However, the 
local plane wave spectra, such as asymptotic rays and 
paraxial beams [S, 91, remain useful if, except across inter- 
faces, the variations of the medium properties occur over a 
scale length much larger than the wavelength. The beam 
algorithm consists of approximating a given source by a fan 
of beams and tracing the propagation of these beams 
through the environment. This method has the advantage of 
being free of certain ray-tracing artifacts such as perfect 
shadows and infinite field at caustics. It also obviates the 
need for searching the eigenray. The approach is par- 

If the size of the scatterer is small, discrete coordinate 
methods such as finite difference and finite elements are 
suitable for modeling the interior responses. Coupling 
between the interior and exterior can be solved numerically 
by the boundary element or moment method. Both 
boundary elements and finite elements are discrete coor- 
dinate techniques, but they have complementary properties. 
The finite element method has the advantages that it can be 
applied to nonlinear and/or inhomogeneous media easily, 
and its coefficient matrices, which are sparse, may be 
arranged to be banded, symmetric, and diagonally domi- 
nant. The main disadvantage is that the unknowns must be 
of interest in the whole computing region. On the other 
hand, the boundary element method has the advantage that 
the unknowns can be solved only for some boundaries 
which may be far apart. However, it cannot be employed to 
analyze nonlinear and/or inhomogeneous media easily. It 
also yields full coefficient matrices. A hybrid combination of 
these two methods have been employed to analyze wave 
scattering by inhomogeneous scatterers embedded in a 
global environment. 

TABLE I 

Hybrid Combinations of Global Propagators and Local Operators 

Geometric structures 

Global environments Local obstacles System equations Algorithms References 

Layered media Impenetrable, homogeneous, or 
inhomogeneous scatterers 

Layered media Impenetrable, homogeneous, or 
inhomogeneous scatterers 

Layered media Impenetrable, homogeneous, or 
inhomogeneous scatterers 

Layered media Impenetrable, homogeneous, or 
inhomogeneous scatterers 

Layered media Apertures 

Cavity Apertures 

Laminated materials Flaws 

Laplace and/or Poisson’s 
equations 

Transient wave equation 

Helmholtz equations 

Helmholtz equations 

Helmholtz equations 

Helmholtz equations 

Elastodynamic equations 

Image-mode-moment 
method 

1121 

Ray-mode-boundary 
elements-finite 
diIIerence 

[I31 

Ray-mode-boundary 
elements 

Ray-mode-boundary 
elements-finite 
elements 

[I41 

1151 

Ray-mode-moment 
method 

11’51 

Mode-moment method 

Beam-mode-Born’s 
approximation 

Cl71 

1181 
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C. Combination of Global Propagators and Local Scattering 
Operators 

By imposing the boundary conditions on the surface of a 
scatterer, the global propagator and scattering operator will 
be integrated together. One way of doing so is to formulate 
the problem in terms of integral equations by invoking 
Green’s theorem. By expressing the unknown field distribu- 
tions along the scattering surface in terms of appropriate 
basis functions, these integral equations are then discretized 
and reduced to algebraic equations that are solved numeri- 
cally. In the integral equations, the exterior Green’s function 
is evaluated in terms of global propagators, and the interior 
response is modeled by local scattering operators. The 
recently developed hybrid algorithms for solving various 
geometric structures, governed by different system equa- 
tions, are listed in Table I. In particular, the ray-mode- 
boundary elements-finite element method is summarized in 
the next section. 

III. AN EXAMPLE 

For the waveguide with an embedded inhomogeneous 
scatterer in Fig. 1, we seek the solution to the two-dimen- 
sional Helmholtz equation 

+k2(r) d(r) = --s(r), 1 r = (x, z), (1) 
with continuity of 4 and (l/p)(8/&)cj as boundary condi- 
tions. Here k is the wavenumber, s describes the source dis- 

FIG. 1. An inhomogeneous scatterer embedded in a waveguide. B, V’, 
and V’ represent the boundary, exterior, and interior of the scatterer, 
respectively. n is the normal vector to the boundary. (x’, z’) is the source 
location. 

tribution, n is a normal vector to a boundary, p is a medium 
property, and 4 is a wave potential. A time dependence e P”“’ 
has been assumed. 

A. Global Operator-Hybrid Ray-Mode Solution 

Consider the Green’s function g of the homogeneous 
waveguide without the scatterer as the global operator. 
From (1) and Fig. 1, g satisfies the homogeneous wave 
equation 

$+-$+k2 g(r,r’) 
> 

= - 6(r - r’), r = (4 z), r’ = (x’, z’), (2) 

and the boundary conditions at z = 0 and d, which are 
described by the plane wave reflection coefficients R, and 
R,, respectively. (R,,, = - 1 or 1 if g = 0 or ag/an = 0, 
respectively.) The response to any source distribution s(r) 
can then be evaluated by the superposition integral 

d(r) = 1 s(r’) g(r, r’) dV(r’). (3) 

The waveguide Green’s function in (2) is represented in 
terms of a combination of rays, modes, and a remainder 

+ CRNI remainder 2 (4) 

where a typical ray of the lth species and with n reverbera- 
tions is given by 

g,, = i A,,H!‘(kr,,), ml = J(x - x’)~ + (z - z,,)~, 

(RoR,)“, I= 1 

A = Ro(Ro&)“, 1=2 
nl 

&((RoW’~ 1=3’ 

(RoR,)” + ‘3 I=4 

Iz-z’l +2nd, 
z+z’+2nd, 

=?I/ = 
-z-z’+2(n+ l)d, 
-lz-z’l +2(n+ l)d, 

(da) 
I= 1 

I=2 
I=3’ 

1=4 

581/103/2-14 
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and the m th mode is specified by where csN is the saddle point 

g,=pdsin(rc,Z)sin(lc,Z’)exp[ii, lx-x’l], 
m 

cm = (k2 - I&“‘, Im([,)>O, m=O, 1,2,3 ,...; 

i,,=k lx-x’/ [(2Nd)2+(x-x’)2]-“2. (6a) 

The contour C’ in (5) partitions the entire spectra into 
two parts which are to be accounted for by rays and modes, 
respectively. The mode sum in (4) is contributed from those 
modes g, intercepted during the path deformation from the 
real axis C to the steepest descent contour C’, and the ray 
sum in (4) is from those rays g,, with n less than N. The 
ability of explicit separation of the direct ray g,, in (4) is 
important for evaluating the singular contribution in the 
boundary element method in Section 1II.C when source and 
receiver are overlapping each other. One criterion to 
determine the number N in (4) is related to how easy 
one can compute the remainder in (5), where a first-order 
asymptotic approximation, when possible, is preferred (see 
Appendix A). A rule of thumb is to keep the saddle point [, 
away from pole <,‘s (see (Al)) and to make sure that the 
amplitude is relatively a slowly varying function with 
respect to the phase (see (A2)). The other criterion of 
choosing N is to minimize the total number of rays and 
modes. If computing rays is much easier than computing 
modes or vice versa, one may try to minimize the number of 
rays or modes, respectively. 

IC, = mn/d, 

Z’=z’, z=z, 

if R,=-1, R,=-1 

urn =(1/2+m)x/d, 

Z=d-z, Z’=d-z’, 

if R,=l, R,= -1 

(4b) 
K, = mrcjd, 

z=,-5, ZL,‘--$ 

m  m  

if R,=l, R,=l 

K,=(1/2+m)n/d, 

z = z, Z’ = z’, 

if R,= -1, R,=l. 

Playing a key role in determining the numbers of rays and 
modes. the remainder is defined as 

RN= j 40 ewCiP(i)l 4, (5) 
C’ 

where the phase term is 

I’(~)=2Nxd+i Ix-~‘1, 

K=(k2-<2)“2, Im(rc)>O, 
(5a) 

and the amplitude function is 

eiK 12 - 2’1 + ROeiK(Z + 2’) + RdeiK(2d- (z + z’)) 

12 ~‘1) ~ 

40 

+ 

RoRde’“(2d- 1 = 
-4nirc( 1 - RoRdei2Kd) 

. (5b) 

The integration contour C’ is the steepest descent path in 
the complex i domain specified by the condition 

P(i) = P(L) + iu, 24 > 0, (6) 

For sufficiently large N, the saddle point approaches zero 
and no modes will be intercepted (unless [ = 0 is a pole of 
(5)). The hybrid ray-mode solution in (4) is reduced to the 
ray plus remainder solution, 

where the remainder can be interpreted as a collective ray 
accounting for rays g,, with n > N. If N = MX, (4) is reduced 
to the conventional ray solution 

00 4 

g = c c Jz”l. (8) 
n=l I=0 

If N= 0, no saddle point exists for the phase in (5a). When 
choosing C’ to be the real axis C, the hybrid ray-mode 
solution is reduced to the conventional plane wave spectral 
representation which is the same as the remainder integral 
in (5) by letting N = 0 and C’ = C. 

Closing the integration path C by a semicircle at infinity 
and employing the residue theorem, the ray-mode solution 
is reduced to the conventional modal solution 

(9) 

Since the separation of amplitude and phase in a spectral 
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integral such as (5) is not unique, the steepest descent 
contour is also not unique. Therefore the number of modes 
included in (4) may depend on the definition of phase in 
(5a). No approximation is made so far, and the solution 
options in (4), (7), (8), or (9) are exact. This feature is very 
suitable for numerical implementation to optimize the com- 
putational efficiency. Since the mode sum converges slowly 
for small Ix - ~‘1 and the ray sum converges slowly for large 
Ix -x’I, it is suggested to predetermine three threshold 
values X,, X,, and X,, X, < X, d X,, where the mode, 
ray-mode, ray-remainder, and ray formats are employed 
for X,< /x-~‘1, X,3 lx-.x’~>X,, X,3 lx-x’1 3X,, 
and X, > Ix - ~‘1, respectively. The determination of X,, 
i = 1,2, 3, depends on the computational efficiency of each 
individual term and the converging efficiency of these 
options. Fortunately small variation of these threshold 
values does not affect the accuracy or efficiency of the 
algorithm. 

Since it takes almost the same amount of time to evaluate 
a ray (4a), a mode (4b), and the remainder (A3) for the 
present example, we will choose Xi, i = 1, 2, 3, to minimize 
the terms required in computing the Green’s function. In the 
following, we will estimate the minimum number of terms 
required in each option and then provide a simple formula 
to determine the X’s. At first, approximate the total number 
of terms in the hybrid ray-mode solution (4) by 

T H=Minimum[4(N)+M,],,,.,+1, 

(10) 
M ,+k2-[fJ112. 

Second, by noting that 1 g,, 1 < (8nkr,,) - “’ and rn, z 2nd for 
large n, the total number of terms in the ray solution (8) is 

T,=4m+ 1, 

1 (11) 
R7z------- 

16nkdd2 
when 2Nd$ lx-x’l, 

where 6 is a pre-specified error tolerance (I g,, I < 6) and the 
infinite ray sum in (8) is truncated at KC Regarding the ray 
plus ray remainder option, 
approximated by (see (Al )) 

Nc (P(iw) + 5) 
2kd 

P((,(N)) z 2kNd, 

the number N in (7) can be 

when 2NdB Ix-x’/, 

(12) 

where CM. is the smallest wavenumber of the propagating 
modes. Similar to the ray solution, the total number of 
terms T,, in the ray-remainder solution is 4N + 1. Finally, 

the infinite mode sum can be truncated at T, which can be 
estimated a priori by solving 

xcxp{ -[(y)‘-k2]“2 jx-xfjj, T,>M’, 

(13) 

where 6 is a pre-specified error tolerance (I g, I m = TM < a), 
and M’ is the total number of propagating modes. From 
(lOt( 13), the threshold values are determined by 

X,=(x-x’l T,= TH), 

X,=(x-x’IT,,=T,,), (14) 

If there is no solution for X,, we choose X, to be zero if 
T, > T,, and choose X, to be X2 if T, < T,,. If there is no 
solution of X2 we choose X2 = X,. 

B. Local Operator-Finite Element Method 

Since the inhomogeneous scatterer is confined in a local 
region, numerical approaches are suitable to analyze the 
internal response of the scatterer. In this paper, we will 
discuss only the finite element method which is very flexible 
and its coefficient matrices are sparse. The conventional 
finite element method proceeds by discretizing the interior 
of the scatterer into small elements. Let V, denote the eth 
element of the scatterer and $, be an approximate solution 
of ( 1) in V,. The corresponding residual is defined as 

where the subscript “e” denotes the eth element. By 
invoking the weighted residual method, a sum of weighted 
volume integrals for the scatterer is set to zero to minimize 
the residuals, 

WR, dV= 0, (16) 

where W is a weighting function and M is the number of 
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elements in the scatterer. Employing Green’s formula, E is the nodal coefficient matrix 
Eq. (16) becomes 

E= C-f&Lo i,j= 1, 2 9 ..., .Z, 

E,=x j,;[zz 
e 

4 k2 
2 W$, dV 

v, Pe 

where B, is the boundary of V, and n is an outward normal 
to B,. Since the surface integral along the interfaces of 
neighboring elements cancel each other, the sum of 
boundary integral terms of small elements in (17) is reduced 
to a sum of boundary integrals along the surface of the 
scatterer. The integral can be further discretized as 

+zz-k:NiNj dV, 1 Pod) 
and F is the boundary coefficient matrix 

F= [F&x 1, i,j= 1, 2 9 . . . . J, 

F,= I, ;NidrB. 
We) 

J 

The summation in (20~) is over elements adjacent to thejth 
mode, and that in (20d) is over elements adjacent to both ith 
and jth nodes. This is due to the fact that the nodal shape 
function Nj is nonzero only in those elements adjacent to the 
jth node of the scatterer. Therefore, both E and Fare sparse 
matrices. 

Partition the nodal field vector @ in (20a) into two 
vectors: boundary nodal vector Qb and interior nodal 
vector CD’. Partition the E and F matrices accordingly and 

where ri is the mid-point of the ith boundary element AB; rewrite (20) as 

and Z is the number of boundary elements of the scatterer. Ebb& + Ebi@i + Fb yb = sb 
Here 4 and p are the field and density, respectively, in the 
scatterer. 

E’b@b + ,yii@l+ Fi yb = si. (21) 

To discretize the volume integrals in (17) express the Then we are able to delete the interior nodal vector @’ from 
solutions (21) and obtain an equation with only boundary variables 

&Jr) = c N,(r) 4,, (19) YQb + ZYb = s, (22) i 
where 

where N, is a known nodal shape function, and dj is an 
unknown nodal value of the jth node in the scatterer. The 

y = Ebb _ CbiEib 2 Z=Fb, 

summation in (19) is only over the nodes of the eth element. 9 = sb _ cbisi 3 cbz = Ebi(Err) ~ 1 (224 

Substituting (18) and (19) into (17) and by Galerkin’s 
method choosing the nodal shape functions (N,, j = C. Combination of Global and Local Operators-Boundary 
1, 2, . ..) J) to be the weighting function W, we obtain a Elements 
matrix equation Applying Green’s theorem to the exterior of the scatterer 

E@+FYb=S, (20) in Fig. 1, we obtain 

where CD, Yb, and S, respectively, are the nodal held, 
boundary field, and nodal excitation vectors: [j 

B i de(r) dry rB) drB 

@= C4jlJxl2 j= 1, 2, . ..) .Z, Pa) 

Yb= i&r,) , [ 1 i = 1, 2, . . . . Z, (2Ob) 
IX I 

s=Csjllx19 S,=c j 
e 

N,%dV, 
ve r 

j = 1) 2, . ..) .Z, WC) 

- 

+s f(r’) g(r, r’) dV(r’) 
V’ 

(23) 
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where B and I” represent the boundary and interior of the 
scatterer, respectively, V’ denotes the exterior of the scat- 
terer, n is the normal vector to the bounday (see Fig. 1 ), and 
g is the exterior Green’s function (see Section 1II.A) of the 
waveguide, where p and k are constants. The two boundary 
integrals on the left-hand side of (23) are scattered fields due 
to the scatterer, and the volume integral is the direct field 
from the exterior source se(r’). When the observer is on the 
boundary (r E B), the singular contribution of the second 
integral is extracted out explicitly and appears as the 
4 factor on the right-hand side of (23). Following the 
standard procedure of the boundary element method, (23) 
is discretized and becomes a matrix equation 

[ G’!F’ + He@‘] = S’, (24) 

where thejth elements of vectors y, @‘, and S’ are 

Pa) 

s.; = - j f(r’) g’(r,, r’) dV(r’). 
V' 

Here rj is the mid-point of the jth boundary element AB,. 
Similarly, the (ij ) th elements of matrices G’ and H’ are 

Gi = JAB g(ri, rB) drB i 

H;= - 
E a g(r,, rB) dr, -; d,, 

dB, an 

s,= l3 
i=j 

0, i # j. 

(24b) 

If the scatterer is non-penetrable, one does not need the 
finite element formulation in the previous section, and 

‘f’“= (GL’)-l s’, if #=O 

CD’ = (H’) - ’ S’, 
(25) 

if @/an = 0. 

If the scatterer is penetrable, we have to convert the nodal 
values in Qib to the mid-point values in @‘, or vice versa, in 
order to equate the variables in (22) and (24). Assuming 
that the average value of the two nodal values of a boundary 
element is equal to the mid-point value, we obtain, from 

(221, 

(FS” + ZYb) = 3, (26) 

where 

8= $( Y+ Y’) Wa) 

and Y’ is a permutation of Y by moving the first column to 
the last column. Define a diagonal matrix 

e 

T= Ctiil,x 1, +P 
P’(ri)’ 

(27) 

where ri is the mid-point of the ith boundary element of the 
scatterer. Then (26) becomes 

[ F*b + ZPb] = s, 

where 

pb = TY’, p=ZT-‘. @a) 

Solving (24) and (28) with boundary conditions &’ = @’ 
and pb = Ye, we will find the field and its normal derivative 
on the boundaries. Then from (21) or (23), we will be able 
to find the field in the exterior or interior, respectively, of the 
scatterer. 

IV. STATIC LIMIT 

Regarding the global operator, one must solve the 
Green’s function problem of Poisson’s equations subject to 
boundary conditions in a global medium. If the medium is 
range-independent, and by realizing that images, evanescent 
mode, and evanescent spectra in the static case are 
analogous to rays, modes (both evanescent and propa- 
gating), and spectra (both evanescent and propagating), 
respectively, one can apply the methods developed 
previously for the dynamic problems to the static problems. 

An image representation is suitable for structures which 
have few layers, typically one or two. This is because a 
proliferation of images makes this representation impracti- 
cal when the number of layers is large. This representation 
is only numerically efficient when the source and receiver 
are close to each other, compared to the overall dimensions 
of the structure within which they are placed. 

The spectral integral has similar convergent properties as 
the image option, and synthesize the Green’s function in 
terms of a superposition of evanescent spectra. This solution 
represents all of the images collectively and, therefore, 
can alleviate the difficulties of the image proliferations. 
However, the image solution is convenient for the separa- 
tion of the dominant images, which experience fewer reflec- 
tions and hence have a stronger contribution, from the rest 
of the images. This property is especially important when 
the source and receiver are overlapping each other, where 
the singular contribution due to the direct source has to be 
treated separately. 

The modal solution represents the Green’s function in 
terms of evanescent modes. Higher order modes die out 
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quickly when the source and receiver are widely separated, By integrating (31), I(0, z) becomes 
but are not negligible for a small separation. The convergent 
properties of the modal representation complement those of 
the previous two representations. (32) 

Similar to the ray-mode solution in the dynamic case, the 
Z(O,z)=*ln~=g~,+g~,. 

n2 

modified image solution represents dominant image terms 
in closed form and we treat the rest of the images collectively Thereby, we have accomplished the derivation of the image 
as a remainder. This remainder, represented by a spectral solution in the static case from the ray solution in the 
integral may be evaluated by numerical integration along a dynamic case. Note that the image solution in (29) for 
fast convergent path through contour deformation in the R, = R, = 1 is not a valid representation because the series 
complex-spectral domain. Unlike the dynamic case, there diverges. The modified image solution has the same form as 
will be no poles intercepted by the contour deformation. that of the ray plus remainder solution if one replaces g,, by 
This modified image option has the advantages of both g$ and redefines the steepest descent contour C’ of the 
image and spectral representations. remainder in (5) as 

In principle, the static limit for the example given in 
Section 1II.A can be derived by letting the wavenumber 
k approach zero. The modal and the spectral integral Wi) Ix-x’l 

-= ftan ~ 
representations maintain essentially the same forms as those Wi) ( > 2Nd ’ 

in the dynamic case, respectively. The derivation of the 
image solution from the ray solution is not trivial. Solving Re(i) 5 0, Im(i) 2 0. (33) 

(2) for k = 0 by using the image method one has the image 
solution In a range-dependent medium, not every global operator 

g = i: i s:,, --An, 
for the dynamic responses is useful. Actually, the free space 

-In rn, (29) 
Green’s function may be a convenient choice because the 

n=l /=o 
g:,= zn static field does not “propagate” and dies out within short 

ranges. Therefore, the need of a Green’s function of the 

with A,, and r,,, specified in (4a). Though the image solution entire global environment is not so acute in a non-separable 

here has the same form as that of the ray solution (8), the global environment as that in the dynamic case. An advan- 

one-to-one correspondence between g,, in (4a) and gjl, in tage of this approach is the simplicity of the Green’s func- 

(29) does not exist. This is because each In function in (29) tion; however, this requires the solution of a large system of 

exhibits a singularity as x approaches infinity. Therefore, simultaneous equations. 

each individual image term g$ cannot have a Fourier The static limit of the finite element method can be made 

integral representation as in (5) either. However, if one by simply assigning zero to the k, in (20d). Similarly, the 

considers a complementary pair of images, i.e., their A,,‘s mathematical formats for the static case of the boundary 

have different signs, the contribution of this pair converges element method is exactly the same as those for the dynamic 

to zero as x approaches infinity. Then, this pair of images case. (The only difference is in the Green’s functions, i.e., the 

can have a spectral representation. For example, consider global operator.) Therefore, the hybrid global and local 

the spectral integral of two conventional rays, operators are also applicable for problems governed by the 
Poisson equation. 

V. NUMERICAL RESULTS 

In the numerical simulation, the waveguide width and 
velocity are normalized to be one, and the boundary condi- 
tions at z = 0 and d ( = 1) are 4 = 0. At first, we consider an 

where we have assumed that R,= - 1 and then A,, = inhomogeneous peanut-shaped scatterer in a waveguide 
--An,. By taking the derivative of Z(k, z) with respect to z excited by a line source (see Fig. 1). The four points on the 
to eliminate the l/~ term in the integrand in (30) and interface of the scatterer denoted by a, b, c, and dare located 
making the static limit k + 0, the spectral integral can be at (0, 0.15) (0, 0.45), (0, 0.75), and (0.225, 0.52), respec- 
integrated analytically and is reduced to the following form: tively. The velocity of the inhomogeneous scatterer is 

described by v(x) = (x + 24)/18, and the p quantities of the 
d40, z) -A,, * I 

z+z’+2nd z-z’+2nd 
-= - waveguide and the scatterer are chosen to be one. A line 

dZ 
? 

Lx c ri2 
7 

Cl 
I. (31) 
J source is located at ( - 0.25,0.5). The magnitude of the wave 
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FIG. 2. The configuration employed for calculation is shown in Fig. 1: 
(a) 101 along the boundary of the inhomogeneous scatterer verses 
boundary elements denoted clockwise from point a; (b) contour plots 

ofl41. - 

potential 141 along the boundary of the peanut-shaped scat- 
terer is shown in Fig. 2a for three frequencies (f = 0, 0.16, 
0.32 Hz), and the contour plot of 141 is shown in Fig. 2b. At 
f = 0.16 Hz, the field is still essentially static. But at 0.32 Hz, 
though the frequency is still low and no propagating mode 

exists in the waveguide yet, the field is substantially different 
from and is stronger than that in the static case (f=O). 
Second, we consider a waveguide with a deformed lower 
boundary defined by z = 0.125[ 1 + cos(47cx)] U(0.25 - Ix]), 
where U is the unit step function. The source is located at 
(0, 0.75). The three-dimensional plots and contour plots for 
three frequencies (f = 0, 0.69, and 1.38 Hz) are shown in 
Fig. 3. In the static case (f = 0), the waveguide has no 
propagating mode and has only a relatively small effect 
on the field distribution. For f = 0.69 and f = 1.38, the 
waveguide supports one and two propagating modes, 
respectively. From Fig. 3, one can see how the propagating 
modes are excited and interact with the deformed boundary. 
In the third numerical example, we consider a round 
impenetrable scatterer (with 4 =0 on its boundary) in a 
waveguide. The configuration is shown in the upper right 
corner of Fig. 4. The magnitude of the normal derivative of 
the wave potential along the boundary of the scatterer for 
three frequencies (f = 0, 0.6, and 0.12 Hz) is also shown in 
Fig. 4. Observations similar to those for the second example 
can be made for this calculation. In all of these three 
examples, the hybrid ray-mode-boundary elements-finite 
elements method works well for both dynamic (f#O) and 
static (f = 0) cases. (Note that finite elements are not 
employed in the second and third examples because the 
scatterer is impenetrable.) The transition of physical quan- 
tities between dynamic and static regimes are very smooth. 
In Figs. 5a and b, we consider cylindrical rods of various 
shapes and locations in a parallel-plate structure. The rod is 
biased at constant potential and no external source is 
applied. The magnitude of the normal derivative of the wave 

f=0.69 14 f=O 

1. m- 

/ 

nnn 
c 0 @ ‘/ 

Z~ 0. I”- ’ ! 

FIG. 3. The three-dimensional and contour plots of I$[ excited by a line source in a waveguide with a deformed lower boundary. 
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lrp 

14- 

tz- 

FIG. 4. The contiguration employed for calculation is shown in the 
upper right corner, and ]&S/&I] along the boundary of the scatterer vs 
boundary elements denoted clockwise from point A is shown. 

potential along the surface of the rod is shown in Fig. 5c. 
The effects of the location and shape of a scatterer on the 
field distribution is well demonstrated by this example. 
Once again, we see the hybrid global and local operators 
method efficiently solve static problems. 

VI. CONCLUSION 

We have demonstrated in principle and by specific 
examples how one can combine efficient global operators 
and flexible local operators in the same framework for 
solving both Helmholtz and Poisson equations in a complex 
environment. More reliable and efficient algorithms for 
more complex environments are to be developed. Since no 
rigorous solution is available, a hybrid combination of 
various methods should still be the best approach. To 
construct a hybrid scheme, the first step is to specify the 
applicable parameter regimes and to quantify the numerical 
efficiency and error of each individual method to be 
employed. (These aspects are still missing for many widely 
employed methods such as parabolic equation, beam 
shooting, local mode, etc.) The second step is to determine 
a combining strategy which indicates a priori where to 
employ a certain method and how to combine various 
methods together. The decision making process has to be 
efficient, systematic, and physics oriented. (Otherwise, the 
hybrid method becomes a numbers game.) The last step is 
to have an overall assessment of various aspects (such as 
applicable ranges, errors, efficiency, compatibility with 
other methods) of the hybrid scheme. To make an algorithm 
robust and useful, this is a crucial step. In conclusion, to 
develop new hybrid schemes for unsolved problems and 
to make these new algorithms robust and efficient are the 
future directions. 

12 z?? 
/I an 

tl(-0.2, 0.7) , C(O.2. 0.7) 

0 ! -,,,,,,,,,,,,,,,, i,m,,,p A(-0.2, 0.3) D(0.2, 0.3) 
Y 

(b) 

c (c) A 

FIG. 5. The configuration employed for calculation is shown in a, b, 
and l&j/& along the boundary of the scatterer vs boundary elements 
denoted clockwise from point Ais shown in c: (a) A round rod with radius 
0.3 centered at (0, 0.5) and (0, 0.4) two locations. (b) A square rod with 
four corners denoted by A, B, C, and D which are located at ( -0.2, 0.3) 
(-0.2, 0.7), (0.2,0.3), and (0.2,0.7), respectively. (c) (@/&I( on the rod in 
gigs. a and b. curve 1, for the configuration in Fig. 5a when the round rod 
is centered at (0,0.5); curve 2, for the configuration in Fig. 5a when the 
round rod is centered at (0,0.6); curve 3, for the configuration in Fig. 5b. 
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APPENDIX A: EVALUATION OF 
THE REMAINDER IN (5) 

We define a numerical distance, which measures the 
“distance” between the saddle point iSiv of (6a) and the mth 
modal eigenvalue [,,, in (4b), as D,, = P(lsN) - P(i,). If 

lD,,I >5 for every m (Al) 

and 

N>max (’ ‘xix”, 5}. (AZ) 

(5) can be approximated by the non-uniform stationary 
phase asymptotics: 

R 
27T 

N = lP”(L)l [ 1 ___ 1’2a(c,)exp(S([.)-ii). (A3) 

Here, the condition in (Al) is to ensure that no pole is near 
the saddle point and the condition in (A2) is to ensure that 
the amplitude term is slowly varying with respect to the 
phase. In most parameter regimes, (Al) and (A2) can be 
satisfied simultaneously for some small truncation numbers 
N. However, if it is not so, R, can be evaluated by numerical 
integration along the steepest descent path or by uniform 
asymptotics in terms of the Fresnel integral. 
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